

EE/SE/CPRE 491 - Spring 2019

Student Suggested Project

Sheet Vision
Design Document

Team Number
sddec19-13

Faculty Advisor

Alexander Stoytchev

Team Members

Bryan Fung
Garrett Greenfield

Ricardo Faure
Trevin Nance

Walter Svenddal

Team Website
http://sddec19-13.sd.ece.iastate.edu/

Version: May 2/Version 2

Table of Contents

List of Abbreviations & Symbols 2

List of definitions 2

1. Introduction

1.1. Acknowledgement 2

1.2. Project Statement 2

1.3. Operating Environment 3

1.4. Use Case Diagram 3

1.5. Intended Users 4

1.6. Assumptions and Limitations 4

1.7. Expected End Product and Deliverables 4

2. Specifications and Analysis 5

2.1. Project goals, Deliverables 5

2.2. Design Specifications 5

2.3. Proposed Design/Method 5

2.3.1. Block Diagram System 6

2.4. Design Analysis 6

2.5. Process Details 7

3. Testing and Implementation 7

3.1. Hardware/Software 7

3.2. Graphics 8

3.3. Functional Testing 9

3.4. Non-functional Testing 9

3.5. Modeling and Simulation 9

3.6. Standard​s 10

3.7. Implementation Issues and Challenges 10

3.8. Design Testing / Implementation 11

4. Closing Materials 12

4.1. Conclusion 12

4.2. References 12

SSDEC19-13 1

List of Abbreviations & Symbols

1. AWS Amazon Web Services
2. API Application programming interface
3. MIDI Musical Instrument Digital Interface

List of Definitions

1. Sheet Music - ​Music in its written or printed form. [1]
2. Musical Notes - A sign or character used to represent a tone, its position and form

indicating the pitch and duration of the tone. [2]
3. Tabs - A form of written music, but instead of being represented in the traditional sense

(what tone it makes), notes are represented by the specific position they are supposed to
be played in.

1 Introduction

1.1 Acknowledgment

We would like to express our gratitude to our advisor Dr. Stoytchev for taking the time to
help us map out our project, as well as providing technical assistance. We would also like to
thank Dr. Daniels for providing us with course resources and guidelines to follow, to better
ensure our project success.

1.2 Project Statement

Reading sheet music is no easy task. With the creation of alternate ways to learn how to
play music, such as tabs and youtube tutorials, there has been a decline in the amount of people
who can properly read sheet music. The problem with tabs and other kinds of methods of reading
music is that they lack the complexity to be able to convey all of the specific nuances that a
specific piece may have. The best option that captures all of the nuances that most musicians
wish to convey when writing music, is sheet music. The problem with sheet music is that it can
be very difficult at first, and since there is a decline in the amount of people that can read it, it
can be difficult to find a proper way to read it.

Our solution for this is Sheet Vision, an application that can read and show a user how
the sheet music is played, and how it is supposed to sound. This will lead to the user being able
to draw parallels between what is on the sheet, and the music being played, supplementing the
learning process of reading sheet music. Not only will our application play the music on the

SSDEC19-13 2

sheet, but it will also listen to the user playing it, and will give proper feedback to the user, to fix
mistakes they may be making.

1.3 Operating Environment

Our product is expected to be used quiet indoor environment, with bright and uniform
lighting. Our ideal environment is quiet to allow our application to more accurately pick up
sound from the user when they’re playing along with our on-screen piano prompt, showing
which keys should be played. Lighting is also important to allow the image taken to be clear and
evenly colored. This is necessary so our computer vision algorithm can accurately detect the
notes and rests, and where they lie on the staffs.

1.4 Use-Case Diagram

This is our use case diagram for our application. It demonstrates the use case ideas,

services and actors for the application.

SSDEC19-13 3

1.5 Intended Users

This product is intended for beginner musicians readers alike. This application should
provide instructions simple and clear enough for even first-time musicians can keep up with
using our product, yet powerful enough to ease some of the struggle of reading more complex
songs for veteran musicians.

1.6 Assumptions and Limitations

Assumptions:
● Sheet music, though varying in format, will have the same characteristics and symbols

you’d expect in a modern piece of sheet music, such as the symbols used to represent
notes and rests. An example of the assumed form of the sheet music can be found in
Figure 0.1.

● User will have a strong internet connection to be able to take full advantage of note
corrections.

● User will have access to a computer or mobile device.
● If the user is using a mobile device, that device must have a camera.

Limitations:
● Some features will be limited based on the users possession of sheet music and a musical

instrument.
○ The user needs to provide their own sheet music to scan, since our application

will not provide it for them.
○ The user will need an instrument to make use of the play-along feature.

● The quality of our output will rely on the quality of both a users camera and microphone,
depending on which feature they are making use of.

1.7 Expected End Product and Deliverables

● Sheet Vision Multi Platform Application - Expected Delivery Date : December 2019
○ System to read in images of sheet music.
○ Computer vision system used to decode sheet music into information useful for

the application.
○ System that uses information provided by the computer vision system to select

what notes should be played and when.
○ Audio processing system that can detect and decode audio into information useful

for application.
○ System that uses information provided by audio processing system to notify the

user if they played the song correctly or not.

SSDEC19-13 4

○ Can run on a multitude of systems:
■ Desktop Environment.
■ Mobile Environment.

2 Specification and Analysis

2.1 Project goals, Deliverables

● ReactJS desktop application for windows.
● Application can read images from camera/file directory.
● Algorithm can recognize music notes in sheet music.
● Application can play the correct notes that come from the processed sheet music.
● Application can listen to user audio using the microphone.
● Algorithm can recognize what music notes are being played by the user based on audio

input.
● Application can compare output from audio processing and image processing to

determine if user is playing the correct notes.

2.2 Design Specifications

The mobile phone application will be a standard mobile application, the Windows
application will be .exe and the Mac application will be .app. The application will be able to
accept both .png and .jpg images to analyze. Then the a front end application will be able to play
the MIDI files that are received from AWS, and then as an additional feature, it will be able to
listen to an audio feed from the microphone in order to detect errors in the music it hears from.

2.3 Proposed Design/Method

The design calls for the front end code to be written in ReactJS, wrapping it in Electron
and React Native to provide multi platform usability. The machine vision will written in Python
using the OpenCV library along with Numpy on an Amazon Web Services (AWS) server to take
the load off the users device, and to allow the machine vision code to be reused without having
to be re written for each platform.

SSDEC19-13 5

2.3.1 Block Diagram of System

2.4 Design Analysis

Architecture:
The computer vision algorithms will mainly be run on a machine on an AWS web

machine and be accessed with the use of API requests sent from the client application to this
machine, which we will refer to as the server. The client application will be available in the form
of both mobile and desktop application, both multiplatform, thanks to the frameworks that we are
using to create them. A stack of ElectronJS and ReactJS are used on the desktop client to permit
it to be available on MacOS, Windows and Linux, with little to no changes to our code, making
it simple to maintain and solves the problem of scalability of the project. Likewise, for the
mobile client, we will be using React-Native, which allows our application to be available to
both android, iOS, and desktop devices. With so many clients, how is it that we are maintaining
the main component of the application intact and consistent through all operating systems and
devices?

The way we are maintaining this consistency is by only having this component stored in
one place, in which any kind of client can access, therefore, we decided it would be best to keep
the computer vision and processing all separate from the client application and have a clear API
in which we simply send data to the AWS machine, the machine processes the data and simply
returns a data structure with data we can use to play sounds and create UI updates that act on the

SSDEC19-13 6

data returned. The data will be consistent no matter what device it gets sent to, making it easy to
make multiple versions of the same app, without risking functionality and avoiding data
inconsistencies when processing data on different systems.

2.5 Process Details

When the user opens the application they will be greeted with the option to upload an
image of sheet music or take a picture themselves. Once the image has been selected/taken, the
user will then be able to upload the images. Once uploaded a POST request will be sent to the
AWS machine containing the machine. The AWS machine will accept the POST which will
contain the image. Upon receiving the image the main Python program will be ran. Inside of the
main program the image will be groomed for the NoteFinder object, this grooming includes
removing image corrections, such as removing noise or rotating the image and converting the
video to binary. When it receives the black and white image the NoteFinder will find all of the
regions of interest and send them to different methods to have the notes extracted from them and
put into arrays. Then these arrays are combined in the NoteMapper, this output is sent to the
MidiConverter. Once the MIDI converter has finished the MIDI file is returned to the front end.
From here the MIDI file can be played while animating the notes which are being played on an
animated piano. The user can also play the sheet music themselves while the application listens
to their playing and alerts them when they make mistakes.

3 Testing and Implementation

3.1 Hardware/Software

AWS Machine:
- Software:
● OpenCV
● Python
● NumPY
● Apache

Client (Desktop)
- Hardware:
● High-Precision Microphone
● High-Resolution Camera/Document Scanner
- Software:
● ReactJS
● ElectronJS
● HTML, JS, CSS]

SSDEC19-13 7

Client (Mobile)
- Hardware:
● Mobile Camera
● Mobile Microphone
- Software:
● React Native
● JS

3.2 Graphics

Figure 3.2

The above figure shows the different sections of the the project and the inner modules

within it. The modules detailed in the graphic are the Desktop Client, Mobile Client and Backend
AWS machine. The desktop client on the top right consists of a stack of ReactJS on top of
ElectronJS, as well as the individual components that are part of the application. The Mobile

SSDEC19-13 8

application shown in the bottom right, consists of react-native as well as the individual
components needed in the application. Finally the AWS machine detailed in the top left is the
final component needed to make up our platform. Inside this section is the architecture we will
be using for our image processing algorithm.

3.3 Functional Testing

The following list includes testing for functional requirements
I. The application shall be able to access the devices camera

II. The application shall be able to access the devices saved images
III. The application shall accurately display piano animations which correctly for a given

MIDI file
IV. The application shall be able to accurately find and play simple music such as ​Mary Had

a Little Lamb​.
V. The application shall be able to listen to sound and notify the user if the notes are

incorrect.

3.4 Non-functional Testing

The following list includes testing for non-functional requirements
I. Performance: Test that the machine vision algorithm should be able to analyze the music

sheet within several seconds of the initial query.
A. Because of the finite datasets you can stress test the runtime of requests on

different datasets manually.
II. Scalability: At least 50 devices should be able to make post requests simultaneously

without affecting performance.
A. Because AWS will be handling the communication, we can use their available

resources to test scalability.
III. Extensibility: Test that the algorithm should be able to run on AWS/APP.

A. This can be completed through just running the application.

3.5 Modeling and Simulation

The model for our application has three major components (shown in figure 3.2). The
computer vision component which is hosted on AWS, the desktop client side application which
is ReactJS wrapped in Electron, and ReactJS wrapped in React Native for the client side mobile
application. Both of the client side components will use ReactJS modules for the different
requirements for our client side app. These client side components will access the computer
vision module via an HTTP post request, sending an image of the sheet music. The sheet music

SSDEC19-13 9

will then be processed and a MIDI file will be returned to the client side application where the
MIDI file will be played and parsed for visualization.

Each of the client side components will have the ability to get images either from the
camera, or the memory of their respective platform. They will also have modified algorithms for
displaying piano animations and for detecting notes being played by users for note feedback. The
application will be able to read the notes from and play ​Mary Had a Little Lamb​ by using either
the mobile or desktop client side application to take, or retrieve an image of the sheet music for
the song, and send it to the AWS server to be processed. The server will process the image and
return a MIDI file which the respective client side application will play.

Using AWS provides several desirable properties for our computer vision component.
Firstly the AWS machine provides excellent computational power which will allow our
computer vision algorithms to run quickly. Secondly using a remote server for our computer
vision application allows any front end application to access the endpoint, this allows the
application to be easily extended to other platforms without having to rework the computer
vision code, while also providing the processing power to handle numerous simultaneous
requests.

Our application after creation is very easily mass produced to the public for the final step
of revising our functionality through public testing. Because our product can be easily sent to the
public we can have people who are excited about our product test the functionality and simulate
any edge cases we may run into while creating new use cases for the product.

3.6 Standards

1857.5-2015 - IEEE Standard for Advanced Mobile Speech and Audio
- This standard provides tools for audio processing as well as providing encoding

information for both high and low bit rate audio.

P24748-3 - ISO/IEC/IEEE Draft International Standard - Systems and Software
Engineering-Life Cycle Management-Part 3: Guidelines for the Application of ISO/IEC/IEEE
12207 (Software Life Cycle Processes)

- This is a standard for how the basic flow of a project should go. It covers many of the
technical aspects of creating a project and is useful for any project in our field of study

3.7 Implementation Issues and Challenges

The biggest challenge of the project will be the implementation of the computer vision to
accurately read sheet music. There are many problems which can cause errors in the note
recognition and detection. These problems range from issues with image quality to the specific
stylings of the symbols on the page. In order to deal with these problems we are taking a series of
steps. The first step is to use a gaussian blur filter to remove image noise, then realign the image

SSDEC19-13 10

by detecting lines in staves of music and using these to rotate the image. After doing this we use
binary thresholding to fix lighting issues. To accommodate for different size images we scale the
images up and down when looking for symbols. In order to deal with different stylings of
symbols we attempt to gather a large variety of symbols of different styles to use as templates in
our search.

3.8 Design Testing / Implementation

In order to test the computer vision algorithm we break it down into two portions. First is
the image preprocessing. To test the preprocessing we simply will give the algorithm different
pictures of sheet music and compare the number of regions of interest found to the actual amount
of regions of interest present in the music. This one test will work for testing the image
correction since image correction is a mostly qualitative process, but we will only get the right
amount or regions of interest if the preprocessing works. The second portion of the computer
vision we can test is the symbol extraction, in order to test this we will give the symbol
extraction algorithm different images of sheet music and count the number of symbols extracted
correctly versus the number found and the number actually present in the picture.

To test the integration of our sheet-reading algorithm, we have selected 5 different pieces
of sheet music which must be translated correctly to a well-formatted MIDI file to determine
success. We will take pictures of the sheet music using our test phones, then supply them to the
algorithm either through the application or directly. So long as the algorithm produces a correct
MIDI file for the input of these pictures of sheet music, we will not need to do integration testing
with the application to determine the correctness of the algorithm.

To test that our mobile application functions correctly, we will run through the process of
receiving a picture by all accessible means and testing the communication to and from the
backend with the MIDI files. The piano animation must also be tested, and for that we will create
a MIDI file which contains a large range of different notes, time signatures, and so on to attempt
to catch any errors with our piano. Finally, we will also test as many use cases for our app as
possible, and ask acquaintance test subjects to attempt to use the app to try to find any errors.

SSDEC19-13 11

4 Closing Material

4.1 Conclusion

Throughout these two semesters we will work on creating a application that can scan
through a sheet of music and create a simple animation of which keys on a piano you should
press that correlate to the beats that will be playing. With this you can change features and after
hearing what it should sound like and seeing what you should play; you can turn the application
into practice mode and it can tell you if you are playing the correct notes.

4.2 References

“OpenCV.” ​OpenCV​, 20 Nov. 2018, opencv.org/opencv-4-0/.

“React – A JavaScript Library for Building User Interfaces.” ​– A JavaScript Library for Building

User Interfaces​, reactjs.org/.

“The Official MIDI Specifications.” ​Specs​, www.midi.org/specifications.

“Use React Native.” ​Use React Native​, Use React Native, 25 Mar. 2019, www.reactnative.com/.

“Getting Started with Amazon EC2.” ​Amazon​, Amazon, aws.amazon.com/ec2/getting-started/.

SSDEC19-13 12

